To investigate the effect of thinning intensity on environmental factors and ectomycorrhizal mushroom fruiting in forest ecosystems, we studied canopy closure, throughfall, soil temperature, soil moisture, light response of understory vegetation, and ectomycorrhizal mushroom fruiting in a 10-year-old pine forest after 34%, 45%, and 60% thinning. Canopy closure was significantly higher in the 34% treatment and control plots, ranging from 80–85% in April. However, in November, all thinning treatment plots showed a decrease of approximately 5–10% compared with the control plot. The 60% treatment plot had over 200 mm of additional throughfall compared with the control plot, and monthly throughfall was significantly higher by more than 100 mm in October. The soil temperature in each treatment plot increased significantly by up to 1°C or more compared with the control plot as the thinning rate increased. The soil moisture increased by more than 5% in the thinning treatment plots during rainfall, particularly in the 34% treatment plot, where the rate of moisture decrease was slower. The photosynthetic rate of major tree species (excluding Pinus densiflora)was highest in Quercus mongolica, with a rate of 7 μmolCO2·m-2·s-1. At a lightintensity of 800 μmol·m-2·s-1, Q. mongolica showed the highest photosynthetic level of 6 ± 0.3 μmolCO2·m-2·s-1 in the 45% treatment. The photosynthetic rate of Fraxinus sieboldiana and Styrax japonicus increased as the thinning intensity increased. The Shannon– Wiener index of mycorrhizal mushrooms did not significantly differ among treatments, but the fresh weight of mushrooms was approximately 360–840 g higher in the 34% and 45% treatments than in the control. Additionally, the fresh weight of fungi in the 60% treatment was 860 g less than that in the control. There were more individuals of Amanita citrina in the control than in the thinning treatment, while Suillus bovinus numbers increased by more than 10 times in the 34% thinning treatment compared with the control.