This paper presents a decentralized coordination for a small-scale mobile robot teams performing a task through cooperation. Robot teams are required to generate and maintain various geometric patterns adapting to an environment and/or a task in many cooperative applications. In particular, all robots must continue to strive toward achieving the team’s mission even if some members fail to perform their role. Toward this end, given the number of robots in a team, an effective coordination is investigated for decentralized formation control strategies. Specifically, all members are required first to reach agreement on their coordinate system and have an identifier (ID) for role assignment in a self-organizing way. Then, employing IDs on individual robots within a common coordinate system, a decentralized neighbor-referenced formation control is realized to generate, keep, and switch between different geometric shapes. This approach is verified using an in-house simulator and physical mobile robots. We detail and evaluate the formation control approach, whose common features include self-organization, robustness, and flexibility.