본 논문에서는 인간 운동 제어 이론과 기계학습을 기반으로 하여 로봇의 접촉 작업 수행을 위한 새로운 운동 학습 전략을 제시하였다. 성공적인 접촉 작업 수행을 위한 본 연구의 전략은 강화학습 기법을 통하여 최적의 작업 수행을 위한 임피던스 매개 변수를 찾는 것이다. 본 연구에서는 최적의 임피던스 매개 변수를 결정하기 위하여 Recursive Least-Square (RLS) 필터 기반 episodic Natural Actor-Critic 알고리즘이 적용되