A probability-based data generation is a typical context-generation method that is a not only simple and strong data generation method but also easy to update generation conditions. However, the probability-based context-generation method has been found its natural-born ambiguousness and confliction problems in generated context data. In order to compensate for the disadvantages of the probabilistic random data generation method, a situation propagation network is proposed in this paper. The situation propagating network is designed to update parameters of probability functions are included in probability-based data generation model. The proposed probability-based context-generation model generates two kinds of contexts: one is related to independent contexts, and the other is related to conditional contexts. The results of the proposed model are compared with the results of the probability-based model with respect to performance, reduction of ambiguity, and confliction.