Low-cost sensors have been widely used for mobile robot navigation in recent years. However, navigation performance based on low-cost sensors is not good enough to be practically used. Among many navigation techniques, building of an accurate map is a fundamental task for service robots, and mapping with low-cost IR sensors was investigated in this research. The robot’s orientation uncertainty was considered for mapping by modifying the Bayesian update formula. Then, the data association scheme was investigated to improve the quality of a built map when the robot’s pose uncertainty was large. Six low-cost IR sensors mounted on the robot could not give rich data enough to align the range data by the scan matching method, so a new sample-based method was proposed for data association. The real experiments indicated that the mapping method proposed in this research was able to generate a useful map for navigation.