It is very important for a mobile robot to recognize and model its environments for navigation. However, the grid map constructed by sonar sensors cannot accurately represent the environment, especially the narrow environment, due to the angular uncertainty of sonar data. Therefore, we propose a map building scheme which combines sonar sensors and IR sensors. The maps built by sonar sensors and IR sensors are combined with different weights which are determined by the degree of translational and rotational motion of a robot. To increase the effectiveness of sensor fusion, we also propose optimal sensor arrangement through various experiments. The experimental results show that the proposed method can represent the environment such as narrow corridor and open door more accurately than conventional sonar sensor-based map building methods.