논문 상세보기

Effect of Nitrogen Rate and Planting Density on Early Growth in Wheat KCI 등재

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/13254
서비스가 종료되어 열람이 제한될 수 있습니다.
한국작물학회지 (Korean Journal of Crop Science)
한국작물학회 (Korean Society Of Crop Science)
초록

This experiment was conducted with nine wheat geno-types to choose the wheat which has excellent early vigour. 'Vigour 18' and 'ZL 59A' are excellent in the long coleoptile genotype, while 'Amery' and 'Janz' are excellent in the short coleoptile genotype. Responding to the growth stage and nitrogen level, Vigour 18 is predominant in the long coleoptile genogype, while Janz in the short coleoptile genotype. Responding to sowing density and nitrogen level, the higher the sowing density was, the shorter the leaf area of Vigour 18 and Janz. Also the leaf area turned out to larger in the plot fertilized with high nitrogen than in the plot fertilized with low nitrogen. This is true of leaf weight and root weight. Concerning specific leaf area (SLA) and leaf area ratio (LAR), the higher the sowing density was, the SLA tended to grow larger, while the SLA grew larger in the plot fertilized with low nitrogen, as were found in Vigour 18 and Janz. The roots of long coleoptile genotype, Vigour 18, turned out to grow longest on the plot sown with 3 seeds. While the roots of short coleoptile genotype, Janz, grew longest on the plot sown with 2 seeds. The relative growth rate (RGR) was the same at low N rates and high N rates. The RGR was 0.071 and 0.072 g g-1d-1 at low N rates and high N rates. The partitioning of RGR into net assimilation rate (NAR) and LAR showed that the average LAR at low N rates was similar to the LAR at high N rates. Variation within each cultivar in the LAR and NAR was small relative to the difference between them at low N rates and high N rates. Above ground mass was 8.2 mg greater at high N rates than low N rates, whereas leaf area was 0.05 ~textrmm2 kg-l greater at high N rates than low N rates. The NAR was similar at low N rates and high N rates, whereas LAR was greater at high N rates (0.05 ~textrmm2 kg-l ); variation in SLA was responsible for the variation in NAR and LAR both at low N rates and high N rates. NAR was more closely associated with the reciprocal of SLA.

저자
  • Chang Khil Song
  • Richard A Richards