논문 상세보기

사출성형한 M3/2계 고속도공구강 분말의 탄소함량 및 소결밀도 변화 KCI 등재

Variations in Carbon Content and Sintered Density of M3/2 Grade High Speed Steel Powders on Metal Injection Molding Process

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/2039
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국분말야금학회지 (Journal of Korean Powder Metallurgy Institute)
한국분말재료학회(구 한국분말야금학회) (Korean Powder Metallurgy Institute)
초록

An investigation was performed to apply the M3/2 grade high speed steel for metal injection molding using both prealloyed and elementally blended powders. The injected samples were subjected to a debinding step in gas atmosphere at a ratio that affected the carbon content of the material. The carbon content ranged from 1.4wt.% to 1.43wt%. with increasing content up to 80% in atmosphere for the prealloyed powders. The carbon contents of the elementally blended powders exhibited 1.44wt.% and 1.62wt.% at 10% and 20% gas, respectively. This level decreased to 0.17wt.% upon increasing the content. The sintered density of both powders increased rapidly as the temperature reached the liquid phase forming temperature. After forming the liquid phase, the density rapidly increased to the optimum sintering temperature for the prealloyed powders, whereas the density of mixed elemental powders goes up slowly to the optimum sintering temperature. The optimum sintering temperature and density are 126 and 97.3% for the prealloyed powders and 128 and 96.9% for the elementally blended powders, respectively. The microstructure of the specimen at the optimum sintering temperature consisted of fine grains with primary carbides of MC and type for the prealloyed powders. The elementally blended powders exhibited coarse grains with eutectic carbides of MC, and type.

저자
  • 이광희