Processing and Properties of Engine Valve-shaped TiAl-Mn Intermetallics by Reactive Sintering
Engine valve-shaped TiAl-Mn intermetallics containing 43.5 to 47.5at%Al (Mn/Al=0.036) are successively fabricated by reactive sintering the elemental powder mixtures near-net shaped by extrusion and die forging. A duplex structure consisted of lamellar grains and equiaxed grains is developed for all compositions, and the areal fraction of the lamellar grains(or equiaxed grains) decreases (or increases) with increasing Al content. As Al content increased, the elongation increases with accompanying decrease in yield strength and ultimate tensile strength at both room temperature and 80. This indicates that the suitable composition is Ti-45at%Al-1.6at%Mn in considering the balance of ambient and elevated tensile properties. The reactive-sintered Ti-45Al-1.6Mn alloy shows superior oxidation resistance not only to the plasma arc melted one but also to the heat resistance steel STR35(representative exhaust valve head material for automotive engine). The reactive-sintered Ti-45Al-1.6Mn alloy coated with an oxidizing scale exhibits a better wear resistance than induction hardened martensitic steel STR11(representative exhaust valve tip material for automotive engine).