A new low melting inorganic binder, monoclinic , has been developed for Selective Laser Sintering (SLS) of alumina powder by dehydration process of boron oxide powder in a vacuum oven at . It led to better green SLS parts and higher bend strength far green and fired parts compared to other inorganic binders such as aluminum and ammmonium phosphate. This appeared to be due to its low viscosity and better wettability of the alumina particle surface. A low density single phase ceramic, aluminum borate (), and multiphase ceramic composites, , were successfully developed by laser processing of alumina-monoclinic powder blends followed by post-thermal processing; both and have whisker-like grains. The physical and mechanical properties of these SLS-processed ceramic parts were correlated to the materials and processing parameters. Further densification of the ceramic composites was carried out by infiltration of colloidal silica, and chromic acid into these porous SLS parts followed by heat-treatment at high temperature (). The densities obtained after infiltration and subsequent firing were between 75 and 80% of the theoretical densities. The bend strengths are between 15 and 33 MPa.