논문 상세보기

기계적 합금화법에 의한 비평형 Cu-Ta-Mo계 합금분말의 제조 KCI 등재

Formation of Non-equilibrium Cu-Ta-Mo Alloy Powders by Mechanical Alloying

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/2127
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국분말재료학회(구 한국분말야금학회) (Korean Powder Metallurgy Institute)
초록

The solid state reaction by mechanical alloying(MA) generally proceeds by lowering the free energy as the result of a chemical reaction at the interface between the two adjacent layers. However, Lee et reported that a mixture of Cu and Ta, the combination of which is characterized by a positive heat of mixing of +2kJ/mol, could be amorphized by mechanical alloying. This implies that there exists an up-hill process to raise the free energy of a mixture of pure Cu and la to that of an amorphous phase. It is our aim to investigate to what extent the MA is capable of producing a non-equilibrium phase with increasing the heat of mixing. The system chosen was the ternary (x=35, 10). The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The MA powders were characterized by the X-ray diffraction with Cu-K radiation, thermal analysis, electron diffraction and TEM micrographs. In the case of x=35, where pure Cu powders were mixed with equal amount of pure Ta and Mo powders, we revealed the formation of bcc solid solution after 150 h milling but its gradual decomposition by releasing fcc-Cu when milling time exceeded 200 h. However, an amorphous phase was clearly formed when the Mo content was lowered to x=10. It is believed that the amorphization of ternary powders is essentially identical to the solid state amorphization process in binary powders.

저자
  • 이충효
  • 이상진