논문 상세보기

기계적 합금화법에 의한 비평형 Cu-Ta-Mo계 합금분말의 제조 KCI 등재

Formation of Non-equilibrium Cu-Ta-Mo Alloy Powders by Mechanical Alloying

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/2127
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국분말야금학회지 (Journal of Korean Powder Metallurgy Institute)
한국분말재료학회(구 한국분말야금학회) (Korean Powder Metallurgy Institute)
초록

The solid state reaction by mechanical alloying(MA) generally proceeds by lowering the free energy as the result of a chemical reaction at the interface between the two adjacent layers. However, Lee et reported that a mixture of Cu and Ta, the combination of which is characterized by a positive heat of mixing of +2kJ/mol, could be amorphized by mechanical alloying. This implies that there exists an up-hill process to raise the free energy of a mixture of pure Cu and la to that of an amorphous phase. It is our aim to investigate to what extent the MA is capable of producing a non-equilibrium phase with increasing the heat of mixing. The system chosen was the ternary (x=35, 10). The mechanical alloying was carried out using a Fritsch P-5 planetary mill under Ar gas atmosphere. The MA powders were characterized by the X-ray diffraction with Cu-K radiation, thermal analysis, electron diffraction and TEM micrographs. In the case of x=35, where pure Cu powders were mixed with equal amount of pure Ta and Mo powders, we revealed the formation of bcc solid solution after 150 h milling but its gradual decomposition by releasing fcc-Cu when milling time exceeded 200 h. However, an amorphous phase was clearly formed when the Mo content was lowered to x=10. It is believed that the amorphization of ternary powders is essentially identical to the solid state amorphization process in binary powders.

저자
  • 이충효
  • 이상진