An understanding of oocyte gene expression is a necessary for the study of early female gamete development. Recently, oocyte has been used in many techniques such as somatic cell nuclear transfer, intracytoplasmic sperm injection and embryonic stem cell derivation. The purpose of this study was to investigate in the proteomes of pig oocytes and identification of differential proteins between using DIGE technique. In this experiment to overcome of limitation of 2D gel method like a low reproducibility and low sensitivity for proteome analysis of very small quantities, 2D fluorescence difference gel electrophoresis (DIGE), which enables co-detection of up to three samples on the same 2DE gels with CyDyes was used for analysis of oocyte proteins. Proteins within an isoelectric point (pI) range of 3 to 10 and a molecular weight (Mw) range of 20~100 kDa were primarily analyzed in DIGE with 2 replications of each sample. Approximately 1000 spots were detected in 2-D gel. Then, image analysis of DeCyder was performed to detect variations in protein spots between mature oocyte and parthenogenesis embryo. In the comparison of mature oocyte and parthenogenesis embryo, 11 spots were identified to be up-regulated proteins and 2 spots to be down-regulated proteins in parthenogenesis embryo, among which proteins were zona pellucida glycoprotein 4, transferrin receptor, apolipoprotein B, L-3-Hydroxyacyl Coa Dehydrogenase Revisited, cytochrome P450 2C33, similar to Monocarboxylate transporter 2, 2'-5' oligoadenylate synthetase 3, interferon alpha/ beta receptor-1, Chloride channel protein 6, pyruvate carboxylase as well as2'-5' oligoadenylate synthetase 3 using MALDI-TOF-MS. These results suggested that differential proteins were present between mature oocyte and parthenogenesis embryo.