The objective of this study was to evaluate the leaching characteristics of heavy metals (Cu, Pb, Zn and Cd) in an abandoned mine soil stabilized by applying both soluble phosphates and steel slag. Leaching characteristics of heavy metals in the contaminated soils was evaluated by toxicity characteristics leaching procedure (TCLP) and Column test. After leaching batch (TCLP) and column, Pb was found that the most greatly reduced by immobilized. Among the tested three phosphates (Na2HPO4·12H2O, Ca(H2PO4)2·H2O, (NH4)2HPO4), the leaching concentration of Ca(H2PO4)2·H2O and (NH4)2HPO4 decreased more than those of Na2HPO4·12H2O. The rate constant (k1) value was found to be about 1.5 ~ 2.0 times higher than ever before, it could be fast immobilized. The rate constant (k1) of Zn was the highest as 0.1629 ~ 0.1991/ day, it was followed by Zn > Pb > Cd > Cu. Especially, Cu increased more than 2.0 times with the steel slag added, so it was very effective. Total leaching amount of heavy metal was the most TCLP test due to differences in the leaching conditions. Added with the slag, TCLP, Column and Exchangeable form (F1) more decreased. Phosphorus (P) leaching, stabilized by phosphate only, increased than the contaminated soil. But Leaching of P decreased considerably when it was processed in combination with slag. In particular Ca(H2PO4)2·H2O of phosphates showed to be the least leaching, it was expected made of metal-phosphate immobilized.