논문 상세보기

신경회로망에 의한 의료영상 질환인식 KCI 등재

Disease Recognition on Medical Images Using Neural Network

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/243148
서비스가 종료되어 열람이 제한될 수 있습니다.
Journal of the Korean Society of Radiology (한국방사선학회논문지)
한국방사선학회 (The Korea Society of Radiology)
초록

본 논문에서는 신경회로망을 이용한 의료영상의 질환부위 인식방법을 제안하였다. 질환부위 인식을 위한 신경회로 망은 입력층, 은닉층, 출력층으로 구성하여 적응 오차 역전파 알고리즘으로 학습하였다. 신경회로망에 입력된 의료영 상의 특징 파라미터는 웨이브릿 변환에 의하여 분해된 저주파 영역을 행렬식으로 표현하여 특성 다항식의 계수값 (n+1)개로 하였다. 추출된 특징 파라미터는 탄젠트시그모이드 전달함수의 범위로 정규화하여 신경회로망의 입력 벡 터로 이용하였다. 제안된 방법의 타당성을 입증하기 위해서 실험에 사용된 입력 의료영상을 가지고 모사실험을 통해 질환부위의 인식 률을 평가하였다. 실험 결과 4레벨 DWT로 변환된 저주파영역 행렬의 특성 다항식 계수를 탄젠트시그모이드 전달함수의 범위로 정규 화하여 신경회로망의 입력 벡터로 이용했을 때 최적의 학습 횟수를 보였다. 신경회로망의 학습은 적응 오차 역전파 알 고리즘을 사용하였고, 학습계수를 0.01, 모우멘텀을 0.95로 하였을 때, 위영상에 대해서는 55회, 가슴영상은 55회, CT 영상은 46회, 초음파영상은 55회 그리고 혈관영상에 대해서는 157회 등의 최적의 학습 횟수를 보이며 100%의 인식률 을 보였다

In this paper has proposed to the recognition of the disease on medical images using neural network. The neural network is constructed as three-layers of the input-layer, the hidden-layer and the output-layer. The training method applied for the recognition of disease region is adaptive error back-propagation. The low-frequency region analyzed by DWT are expressed by matrix. The coefficient-values of the characteristic polynomial applied are n+1. The normalized maximum value +1 and minimum value -1 in the range of tangent-sigmoid transfer function are applied to be use as the input vector of the neural network. To prove the validity of the proposed methods used in the experiment with a simulation experiment, the input medical image recognition rate the evaluation of areas of disease. As a result of the experiment, the characteristic polynomial coefficient of low-frequency area matrix, conversed to 4 level DWT, was proved to be optimum to be applied to the feature parameter. As for the number of training, it was marked fewest in 0.01 of learning coefficient and 0.95 of momentum, when the adaptive error back-propagation was learned by inputting standardized feature parameter into organized neural network. As to the training result when the learning coefficient was 0.01, and momentum was 0.95, it was 100% recognized in fifty-five times of the stomach image, fifty-five times of the chest image, forty-six times of the CT image, fifty-five times of ultrasonogram, and one hundred fifty-seven times of angiogram.

저자
  • 이준행(남부대학교 방사선학과) | Junhaeng Lee
  • 이흥만(남부대학교 방사선학과) | Heungman Lee
  • 김태식(한국국제대학교 제약공학부) | Taesik Kim
  • 이상복(남부대학교 방사선학과) | Sangbock Lee Corresponding Author