Implementation of Statistical Significance and Practical Significance Using Research Hypothesis and Statistical Hypothesis in the Six Sigma Projects
This paper aims to propose a new steps of hypothesis testing using analysis process and improvement process in the six sigma DMAIC. The six sigma implementation models proposed in this paper consist of six steps. The first step is to establish a research hypothesis by specification directionality and FBP(Falsibility By Popper). The second step is to translate the research hypothesis such as RHAT(Research Hypothesis Absent Type) and RHPT(Research Hypothesis Present Type) into statistical hypothesis such as H0(Null Hypothesis) and H1(Alternative Hypothesis). The third step is to implement statistical hypothesis testing by PBC(Proof By Contradiction) and proper sample size. The fourth step is to interpret the result of statistical hypothesis test. The fifth step is to establish the best conditions of product and process conditions by experimental optimization and interval estimation. The sixth step is to draw a conclusion by considering practical significance and statistical significance. Important for both quality practitioners and academicians, case analysis on six sigma projects with implementation guidelines are provided.