요즈음 인터넷을 통해 물건을 구매하는 경향이 증가하고 있다. 또한 물건을 구매한 소비자는 리뷰, 댓글, 비평 또는 블로그 등의 형식으로 온라인에 그들의 사용 후기를 작성한다. 또한 작성된 사용 후기부터 많은 구매자들은 물건을 구매하기 전에 자신이 구입하고자 하는 물건에 대한 정보를 얻는다. 따라서 회사나 공공기관은 대중이 다른 사람의 의견에 관심을 기울인다는 점 때문에 대중의 의견을 수집하고 분석할 필요성에 직면하였다. 그러나 온라인상에 댓글이 너무 많고, 중복적이면서 짧은 경향이 있다. 이러한 환경 속에서 텍스트 문서의 감성을 인식하는 시스템의 필요성이 대두되었다. 텍스트로부터 작성자의 의견이나 주관적인 생각을 추출할 수 있게 영어에서는 단어에 속성이 주어진 GI와 LKB가 있으나 한글은 아직 속성이 주어진 사전이 존재하지 않는다. 이 논문에서는 한글 품사 중 4개의 품사(명사, 동사, 형용사, 부사)에 속성을 주었다. 그리고 학습 군을 만들어서 감성 단어의 패턴을 구성하고, 문장에서 단어 사이의 공기관계를 구성하여 학습 시켰다. 이 학습을 바탕으로, SO-PMI을 이용하여 문서를 긍정과 부정 2가지 극성을 분류하고, 4개의 품사(명사, 동사, 형용사, 부사)를 각각 조합하여 최상의 조건을 구하였다. 마지막으로 사용자 인터페이스를 통해 새로운 감성 표현, 구성형식, 단어 연관성을 반자동적으로 삽입하고 교정할 수 있는 시스템을 설계하였다.
People are tending to buy products through the Internet rather than purchasing them from the store. Some of the consumers give their feedback on line such as reviews, replies, comments, and blogs after they purchased the products. People are also likely to get some information through the Internet. Therefore, companies and public institutes have been facing this situation where they need to collect and analyze reviews or public opinions for them because many consumers are interested in other's opinions when they are about to make a purchase. However, most of the people's reviews on web site are too numerous, short and redundant. Under these circumstances, the emotion scanning system of text documents on the web is rising to the surface. Extracting writer's opinions or subjective ideas from text exists labeled words like GI(General Inquirer) and LKB(Lexical Knowledge base of near synonym difference) in English, however Korean language is not provided yet. In this paper, we labeled positive, negative, and neutral attribute at 4 POS(part of speech) which are noun, adjective, verb, and adverb in Korean dictionary. We extract construction patterns of emotional words and relationships among words in sentences from a large training set, and learned them. Based on this knowledge, comments and reviews regarding products are classified into two classes polarities with positive and negative using SO-PMI, which found the optimal condition from a combination of 4 POS. Lastly, in the design of the system, a flexible user interface is designed to add or edit the emotional words, the construction patterns related to emotions, and relationships among the words.