Towards a Pedestrian Emotion Model for Navigation Support
본 연구에서는 보행자의 이동(Navigation)지원을 목적으로 한 감성검색시스템의 구축(Implementation)에 있어 시스템의 주요 구성요소 중의 하나인 보행자 감성모델을 사용자의 감성에 일치시키는 방법에 대해 제안하고, 평가실험을 통하여 모델의 타당성을 검증하였다. 가상의 목적지를 의미하는 인테리어 이미지 화상을 이용하여 데이터베이스를 작성한 후 10명의 실험 참가자를 대상으로 각각 5회에 걸쳐 목적지 검색과 만족도에 대한 평가실험을 실시하였다. 실험 참가자에게는 각 실험단계마다의 검색결과에 대해 만족도를 평가하도록 하였으며, 피험자로부터의 피드백 데이터를 이용하여 데이터베이스에 구축된 보행자 감성모델을 반복적으로 학습하도록 하였다. 평가실험 종료 후 보행자 감성모델의 학습효과를 확인하기 위하여 재현율(Recall ratio), 적합율(Precision ratio), 검색순위(Retrieval ranking), 만족도(Satisfaction level)를 비교하였다. 실험결과 5회의 학습을 통하여 재현율, 적합율, 검색순위, 만족도 등이 모두 유의미한 수준으로 상승된 것으로 나타나 본 논문에서 제안하는 보행자 감성모델의 학습방법이 개인의 감성을 획득하는 방법으로서 유효하다는 점을 확인하였다. 또한 본 연구에서 제안한 보행자 감성모델은 상업공간의 인테리어와 같은 시각적 이미지 화상을 대상으로 한 모바일 콘텐츠 제공시스템의 개발에 있어서도 유효하다는 점을 확인하였다. 향후 다양한 분야의 정보기기 콘텐츠의 개발에 있어 본 연구에서 제안한 보행자 감성모델이 사용자 개인의 감성을 획득하는 방법론으로 활용될 수 있을 것으로 기대된다.
For an emotion retrieval system implementation to support pedestrian navigation, coordinating the pedestrian emotion model with the system user's emotion is considered a key component. This study proposes a new method for capturing the user's model that corresponds to the pedestrian emotion model and examines the validity of the method. In the first phase, a database comprising a set of interior images that represent hypothetical destinations was developed. In the second phase, 10 subjects were recruited and asked to evaluate on navigation and satisfaction toward each interior image in five rounds of navigation experiments. In the last phase, the subjects' feedback data was used for of the pedestrian emotion model, which is called ‘learning' in this study. After evaluations by the subjects, the learning effect was analyzed by the following aspects: recall ratio, precision ratio, retrieval ranking, and satisfaction. Findings of the analysis verify that all four aspects significantly were improved after the learning. This study demonstrates the effectiveness of the learning algorithm for the proposed pedestrian emotion model. Furthermore, this study demonstrates the potential of such pedestrian emotion model to be well applicable in the development of various mobile contents service systems dealing with visual images such as commercial interiors in the future.