논문 상세보기

폭소노미 분위기 태그를 이용한 음악의 분위기 유형 분석 KCI 등재

Analysis of Music Mood Class using Folksonomy Tags

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/246838
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
감성과학 (Korean Journal of the science of Emotion & sensibility)
한국감성과학회 (The Korean Society For Emotion & Sensibility)
초록

폭소노미 (foxonomy) 분위기 태그를 이용한 음악 검색 시 내부적으로 단어 태그 대신에 수치 태그 (AV 태그: Arousal과 Valence 값으로 이루어진 태그)를 이용하면 폭소노미의 문제점 중의 하나인 유사어 문제점을 일부 해결할 수 있다. 하지만 이를 위해서는 두 가지 선행 작업이 제대로 이루어져야 하는데, 그 첫 번째가 단어 태그를 수치 태그로 변환하는 작업이며 그 두 번째가 검색 대상인 음악을 수치 태그로 표현하는 작업이다. 첫 번째 작업에 대해서는 이전 연구를 통하여 그 유의성을 보였기 때문에 본 논문에서는 두 번째 작업에 대해서 그 유의성을 밝히고자 하였다. 이를 위하여 본 논문에서는 음악과 AV값 간의 관계를 정의하는 음악-분위기 매핑테이블을 제안하고, ANOVA 검증을 이용하여 분석 하였다. 실험 결과, 동의어 포함 유무에 무관하게 음악 구간의 A값과 V값 모두 12개 음악의 분위기에 대하여 분포차가 발생하고, 모두 제 1종 오류확률 P<0.001를 만족하였다. 결론적으로 음악의 분위기에 따라 AV 값 분포가 다르다는 것을 확인할 수 있었다.

When retrieving music with folksonomy tags, internal use of numeric tags (AV tags: tags consisting of Arousal and Valence values ) instead of word tags can partially solve the problem posed by synonyms. However, the two predecessor tasks should be done correctly; the first task is to map word tags to their numeric tags; the second is to get numeric tags of the music pieces to be retrieved. The first task is verified through our prior study and thus, in this paper, its significance is seen for the second task. To this end, we propose the music mapping table defining the relation between AV values and music and ANOVA tests are performed for analysis. The result shows that the arousal values and valence values of music have different distributions for 12 mood tags with or without synonymy and that their type I error values are P<0.001. Consequently, it is checked that the distribution of AV values is different according to music mood.

저자
  • 문창배(금오공과대학교 소프트웨어공학과) | Chang Bae Moon
  • 김현수(금오공과대학교 소프트웨어공학과) | HyunSoo Kim
  • 김병만(금오공과대학교 소프트웨어공학과) | Byeong Man Kim 교신저자