집중은 관련된 사건을 선택적으로 주의하고, 관련 없는 사건을 무시하는 인간의 중요한 인지 기능중의 하나이다. 인간의 집중 능력을 관리 이용하는 컴퓨터 기반 장치에 있어서 집중과 비집중 상태를 구분하는 것은 필수적으로 요구되는 조건이다. 본 논문에서는, 뇌파신호로부터 분류기의 입력으로 사용되는 특징을 효율적으로 추출하기 위하여 비선형 반복 패턴 분석기법과 스펙트럼 분석 기법을 새로이 결합하였고(13개 특징 추출), 서포트벡터머신, 역전파 알고리즘, 선형분리, 로지스틱 회귀 분류 기반 분류기들을 포함하는 집중-비집중 분류기들의 성능을 분석하였다. 그중에서 81 %의 정확도를 보이는 서포트벡터머신 분류기가 가장 좋은 성능을 보였다. 또한 스펙트럼 분석으로 추출한 특징만을 사용하였을 경우(76 % 정확도)가 비선형 분석 방법으로 추출한 특징만을 사용했을 경우(67 % 정확도)보다 좀 더 우수한 성능을 보였다. 비선형-스펙트럼 분석법을 복합 적용한 서포트벡터머신 분류기가 추후 집중 관련 장비 설계에 있어서 효율적으로 적용될 수 있을 것이다.
Attention is one of important cognitive functions in human affecting on the selectional concentration of relevant events and ignorance of irrelevant events. The discrimination of attentional and inattentional status is the first step to manage human's attentional capability using computer assisted device. In this paper, we newly combine the non-linear recurrence pattern analysis and spectrum analysis to effectively extract features(total number of 13) from the electroencephalographic signal used in the input to classifiers. The performance of diverse types of attention-inattention classifiers, including supporting vector machine, back-propagation algorithm, linear discrimination, gradient decent, and logistic regression classifiers were evaluated. Among them, the support vector machine classifier shows the best performance with the classification accuracy of 81 %. The use of spectral band feature set alone(accuracy of 76 %) shows better performance than that of non-linear recurrence pattern feature set alone(accuracy of 67 %). The support vector machine classifier with hybrid combination of non-linear and spectral analysis can be used in later designing attention-related devices.