넓은 시야각을 갖는 전방향(omnidirectional) 카메라 시스템은 적은 수의 영상으로도 주변 장면에 대해 많은 정보를 취득할 수 있는 장점으로 감시, 3차원 해석 등의 분야에 널리 응용되고 있다. 본 논문에서는 어안(fisheye) 렌즈를 이용한 전방향 카메라로 입력된 영상으로부터 카메라의 이동 및 회전 파라미터를 자동으로 추정하는 새로운 자동보정 알고리즘이 제안되었다. 먼저, 카메라 위치를 임의의 각 도로 변환하여 얻어진 영상을 이용해 일차 매개변수로 표현된 카메라의 사영(projection)모델을 추정한다. 그리고 이후 다양하게 변환되는 카메라의 위치에 따라 에센셜(essential) 행렬을 구하며, 이 과정에서 대상 영상으로부터 적합한 인라이어(inlier) 집합을 구하기 위해 특징점이 영역 내에 분포 정도를 반영하는 표준편차(standard deviation)를 정량적(quantitative) 기준으로 이용한다. 다양한 실험을 통해 제안된 알고리즘이 전방향 카메라의 사영 모델과 회전, 이동 등의 변환 파라미터를 정확하게 추정함을 확인하였다.
Since the fisheye lens has a wide field of view, it can capture the scene and illumination from all directions from far less number of omnidirectional images. Due to these advantages of the omnidirectional camera, it is widely used in surveillance and reconstruction of 3D structure of the scene In this paper, we present a new self-calibration algorithm of omnidirectional camera from uncalibrated images by considering the inlier distribution. First, one parametric non-linear projection model of omnidirectional camera is estimated with the known rotation and translation parameters. After deriving projection model, we can compute an essential matrix of the camera with unknown motions, and then determine the camera information: rotation and translations. The standard deviations are used as a quantitative measure to select a proper inlier set. The experimental results showed that we can achieve a precise estimation of the omnidirectional camera model and extrinsic parameters including rotation and translation.