논문 상세보기

마커리스 트래킹을 위한 특징 서술자의 데이터베이스 생성 및 검색방법 KCI 등재

A Database Creation and Retrival Method of Feature Descriptors for Markerless Tracking

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/247263
서비스가 종료되어 열람이 제한될 수 있습니다.
한국게임학회 논문지 (Journal of Korea Game Society)
한국게임학회 (Korea Game Society)
초록

본 논문에서는 증강 현실 환경에서 실시간 마커리스 트래킹을 수행하기 위한 특징 서술자 데이터베이스 생성 및 검색 방법을 제안한다. 먼저, 특징 서술자를 효율적으로 검색하기 위하여 특징 서술자의 형태를 기준으로 정수 부호화 하여 총 4 단계의 인덱스 데이터베이스를 구성한다. 특정 특징 서술자의 검색은 데이터베이스에서 각 단계별로 유사성 있는 후보 특징 서술자의 인덱스를 탐색하고 입력된 특징 서술자와 탐색된 모든 후보 특징 서술자들의 유클리드 거리 값 비교를 통해 이루어진다. 본 연구에서 제안한 검색방법은 형태를 기반으로 유사하지 않은 특징 서술자들을 검색 대상에서 제외하여 검색의 효율을 높였다. 제안된 방법은 기존 KD-Tree 방법에 비해서 특징 서술자당 약 16ms의 검색 속도 개선이 있었음을 확인할 수 있었다.

In this paper, we propose a novel database creation and retrieval method of feature descriptors to support real-time marker-less tracking in the augmented reality environments. Each feature descriptor is encoded by integer and multi-level database is created in order to retrieve a feature descriptor efficiently. The retrieval of a feature descriptor is performed as follows: Firstly, candidate feature descriptors are searched by traversing the multi-level database. Secondly, the euclidean distance between input feature descriptor and each candidate one is compared. The shortest one is retrieved. The proposed method is 16 ms faster than previous KD-Tree method for each feature descriptor.

저자
  • 윤요섭 | Yun, Yo-Seop
  • 김태영 | Kim, Tae-Young