A Study on the Forecasting of Daily Streamflow using the Multilayer Neural Networks Model
본 연구에서는 낙동강 진동지점에서 일유출량을 예측하기 위하여 신경망모형이 제시되었다. 신경망모형의 구조는 CASE 1(5-5-1)과 CASE 2(5-5-5-1)로 구성하였으며, 은닉층의 수에 따라 두 가지의 모형으로 분류하였다. 각 신경망모형은 광역최소점과 훈련임계치에 수렴하는데 기존의 역전파훈련 알고리즘(BP) 보다 뛰어난 Fletcher-Reeves 공액구배 역전파훈련 알고리즘(FR-CGBP)과 축적된 공액구배 역전파훈련 알고리즘(SCGBP)을 이용
In this study, Neural Networks models were used to forecast daily streamflow at Jindong station of the Nakdong River basin. Neural Networks models consist of CASE 1(5-5-1) and CASE 2(5-5-5-1). The criteria which separates two models is the number of hidde