논문 상세보기

시간자료의 공간화를 통한 일교통량 결측대체 방법론 연구 KCI 등재

Missing Imputation Methodologies for Daily Traffic Counts by Transforming Time Data into Spatial Data

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/249579
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국도로학회논문집 (International journal of highway engineering)
한국도로학회 (Korean Society of Road Engineers)
초록

본 연구에서는 결측된 일교통량의 대체를 위하여 교통공학에서 많이 활용되고 있는 기존의 선형내삽법에 공간상관성 기법을 고려한 새로운 선형내삽법을 제안하였다. 일교통량과 같이 시간적 특성을 지닌 자료를 공간위에 배치하여 공간적 상관성을 고려할 수 있도록 하였다. 공간상관성을 측정하기 위하여 일교통량의 순환성을 감안하여 같은 주의 요일간 상관성과 주별 같은 요일의 상관성을 나타내는 지표로서 Moran Index를 사용하였다. 실제 분석을 위하여 한국건설기술연구원에서 제공한 2004년 11월의 28일간의 일교통량 자료를 4×7 격자 형태로 배치하여 일별 교통량자료를 공간화 시켜 공간 상관성을 살펴보았으며, 여러 가지 통계적 지표를 통하여 공간 선형내삽법의 우수성을 확인하였다.

We suggest a new spatial linear interpolation method to substitute linear interpolation method which widely used in transportation engineering to impute the missing daily traffic volume. We layout daily traffic volume which is time series data over the virtual lattice space to consider the spatial correlation. We used Moran Index to evaluate the spatial correlations among daily traffic volume in same week and same date traffic volume by week considering the circularity of daily traffic volume. For real application, we used daily traffic volume on November, 2004 provided by Korea Institute of Construction Technology(KICT) and transformed daily traffic volume to 4 times 7 virtual lattice space to reflect the spatial correlation. Finally we showed that the spatial linear interpolation method has good performance for missing data imputation based on MAPE, RMSE, and Theil's U criteria.

저자
  • 허태영 | Heo, Tae-Young
  • 오주삼 | Oh, Ju-Sam