열수지 경류센서에 의한 멜론의 흡수량 측정오차는 최저 0.3%에서 최대 31.8% 범위 내에 있었으며, 일사량 20MJ.m-2 .d-1에서는 오차가 적었으나 일사량이 이보다 많아지면 많아질수록 센서측정 경류량이 실측양액 소비량보다 적어지는 경향이었고 일사량이 적어질수록 센서측정 경류량이 실측양액 소비량보다 많아지는 경향이었다. 센서간의 오차는 최저 0.1%에서 최대 13.0%의 오차율을 보였다. 열수지센서측정 경류량은 일사량이나 온도와 고도의 부의 상관관계를 보였다. 그러므로 이를 이용 보정계수를 산출하면 보다 정확한 멜론의 경류량을 측정할 수 있을 것으로 판단되었다.
The mass flow of water in the stem of melon measured by Sap Flow Gauge was compared with the actual flow calculated by the difference between supply and drainage nutrient water to investigate the possibility and accuracy of estimation of melon's transpiration in rockwool culture. The Sap Flow Gauge which was made with copper-constantan theromocouple and nichrome fiber by our research team, was attached to the 3rd node of melon. The outdoor temperature, room temperature, solar radiation and relative humidity were continually measured. The amount of supply and drainage nutrient water were simultaneously measured for calculation of practical consumption of nutrient water to compare with mass flow of sap. The measuring errors of Sap Flow Gauge were 0.3 to 31.8%, which were small at solar radiation of 20MJ.m2.d-1 . The mass flow of water was lower for the measured value by Sap Flow Gauge than the actual value at higher solar intensity, however it was higher at lower solar intensity The variation of error rate of each Sap Flow Gauge was 0.1 to 13.0%. The measuring error with Sap Flow Gauge was negatively related with solar intensity and temperature. Therefore, to measure more exactly the mass flow of sap for estimation of melon's transpiration, the compensation factor must be calculated.