Effect of Root Zone Cooling on Growth Responses and Tuberization of Hydroponically Grown 'Superior' Potato (Solanum tuberosum) in Summer
A potato (Solanum tuberosum L. cv. Superior) cultivar was grown in aeroponic cultivation system to investigate the effect of root zone cooling in summer. Based on their nutrient uptake, growth responses, and tuberization, the possibilities for potato seed production were determined. Although shoot growth and early tuberization increased in the conventional non-cooling root zone system (root zone temperature of 25±2℃), stolen growth, photosynthesis, transpiration rate and number of tubers produced were higher in the cooling root zone system (20±2℃) than in the non-cooling system. Increasing root zone temperature above 25℃ stimulated absorption of K more than T-N, P, Ca, Fe and Mn. On the other hand, root zone temperatures in the range of 20℃ to 25℃ did not affect Mg contents. The lower uptake and supply to leaves of T-N, Fe and Mn at the high root zone temperature promoted early tuberization and advanced haulm senescence. The results stress the importance of keeping root zone temperature to as low as below 20, particularly in summer under temperate Bone.