논문 상세보기

유량과 수질을 연계한 실시간 인공지능 경보시스템 개발 (I) 유량-수질 예측모형의 적용 KCI 등재

A Development of Real Time Artificial Intelligence Warning System Linked Discharge and Water Quality (I) Application of Discharge-Water Quality Forecasting Model

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/25478
서비스가 종료되어 열람이 제한될 수 있습니다.
한국수자원학회 논문집 (Journal of Korea Water Resources Association)
한국수자원학회 (Korea Water Resources Association)
초록

평창강 수질자동측정망 실시간 자료를 이용하여 강우시와 무강우시로 구분하여 분석하였다. 강우시에 측정된 TOC 자료는 무강우시 측정된 자료에 비해 평균값, 최대값, 표준편차가 크게 나타났으며, 강우시의 DO 자료는 무강우시에 측정된 자료보다 낮아 유량이 수질변화에 영향을 미치는 것으로 분석되었다. 신경망 모형과 뉴로-퍼지 모형으로 수질예측 모형을 구성하고, 적용하였다. LMNN, MDNN, ANFIS 모형은 TOC 모의에서 DO 예측에서는 LMNN, MD

저자
  • 연인성(Dept., of, Civil, Eng. Chungbuk, National, Univ.) | Yeon In-Sung
  • 안상진(Dept., of, Civil, Eng. Chungbuk, National, Univ.) | Ahn Sang-Jin