논문 상세보기

Zr-4의 고온 크리프 및 응력이완 특성에 관한 연구 KCI 등재

A Study on High Temperature Creep and Stress Relaxation Properties of Zr-4

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/255951
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
수산해양기술연구 (Journal of the Korean Society of Fisheries and Ocean Technology)
한국수산해양기술학회(구 한국어업기술학회) (The Korean Society of Fisheriers and Ocean Technology)
초록

Zr-4 used for a cladding and an end plug of reactor component has creep deformation under operation at high temperature. Creep is regarded as the time dependent deformation of a material under constant applied stress. Although the major source of the deformation of zirconium component in water-cooled reactors is irradiation creep, the thermal creep may give a rise to significant deformation in reactor component especially at relatively high temperatures and at various constant stresses, and therefore it must be predicted accurately. Stress relaxation is the time dependent change of stress at constant strain and it is a process related intimately to creep. In this paper, the creep behavior and stress relaxation of Zr-4 is examined at the temperature of 500℃ that is 40% of the absolute melting temperature of Zr-4 under the stress below yield stress and under the various constant strains. The results obtained are summarized as follows: 1) With an increase of stress, the steady state creep rate increases and the creep rupture time decreases. 2) The steady state creep rate ε(%/s) for the stress Σsub(c) (kgf/mm super(2)) of Zr-4 increases outstandingly. All the empirical equations computed for Zr-4 increases outstandingly. All the empirical equations computed for Zr-4 are in accord with Norton's model equation(ε=KΣ sub(c) super (n)). The constants of materials computed are as follows: K=3.9881×10 super(-5), n=1.9608 3) The rupture time T sub(r) (hr) decreases linearly with the increase of stress on the log-log scaled graph. The empirical equations computed for Zr-4 are in accord with Bailey's model equation (T sub(r)=K sub(1)Σsub(c) super(m)). The constants of materials computed are as follows: K sub(1)=1.2875×10 super(16), m=-3.467 4) It seems clear that the strain could be quantitatively dependent on the high temperature creep properties such as creep stress, rupture time, steady state creep rate and total creep rate. It is found that these relationships are linear on the log-log graph. 5) In stress relaxation test, as the critical constant strain that can be allowed to the specimen is larger, stress relaxation becomes more rapid, and as the constant strain is smaller, the stress relaxation becomes slower.

저자
  • 오세규 | Oh, Sea-Kyoo
  • 박정배 | Park, Chung-Bae
  • 한상덕 | Han, Sang-Deok