It is main objective of this approach to present a method to analyse stochastic design sensitivity for problems of structural dynamics with randomness in design parameters. A combination of the adjoint variable approach and the second oder perturbation method is used in the finite element approach. An alternative form of the constant functional that holds for all times is introduced to consider the time response of dynamic sensitivity. The terminal problem of the adjoint system is solved using equivalent homogeneous equations excited by initial velocities. The numerical procedures are shown to be much more efficient when based on the fold superposition method : the generalized co-ordinates are normalized and the correlated random variables are transformed to uncorrelated variables, where as the secularities are eliminated by the fast Fourier transform of complex valued sequences. Numerical algorithms have been worked out and proved to be accurate and efficient : they codes whose element derivative matrices can be explicitly generated. The numerical results of two cases - 2-dimensional portal frame and 3/4-cylindrical shell structure - for the deterministic and stochastic sensitivity analysis illustrates in this paper.