The Stereospecific Analysis of the Triacylglycerols of Ginkgo Nut Oils by High-Performace Liquid Chromatography(HPLC) in the Silver Ion and Reversed Phase Modes
Triacylglycerols of the seeds of Ginkgo biloba have been resolved by high-performace liquid chromatography(HPLC in the silver-ion and reverse-phase modes. The fatty acids were identified by a combination of capillary gas chromatography and gas-chromatography /mass spectrometry as the methyl and /or picolinyl ester. The main components are C18:2Ω6(39.0mol%), C18:1Ω7(asclepic acid 21.5mol%), and C18:1Ω9(oleic acid, 13.8mol%). Considerable amounts of unusual acid such as C20:3δ5,11,14 (5.7mol%), C18:2δ5,9(2.8mol%), and C18:3δ5,9,12(1.6mol%), were checked. In addition, an anteiso-branched fatty acid, 14-methylhexadecanoic acid, was also present as a minor component(0.9 mol%). The triacylglycerols were separated into 17 fractions by reverse-phase HPLC, and the fractionation was achieved according to the partition numnber(PN) in which a δ5-non methylene interrupted double bond(5-NMDB) showed different behaviour from a methylene interrupted double bond in a molecule with a given cahinlength. Silver-ion HPLC exhibited excellent resolution in which fractions(23 fractions) were resolved on the basis of the number and configuration of double bonds. In this instance, the strength of interaction of a δ5-NMDB system with silver ions seemed to be weaker than a methylene interrupted double bond system. The principal triacylglycerol species are as follows ; (C18:2Ω6)2/C18:1Ω7, C18:1Ω9/C18:1Ω7/C18:2Ω6, (C18:1Ω7)2/C18:2Ω6, C16:1Ω7/C18:1Ω9/C20:3δ5,11,14, C16:1Ω7/C18:1Ω7/C20:3δ5,11,14, C18:1Ω9/C18:1Ω7/C18:2Ω6, C18:1Ω9/C18:2δ5,5/C20:3δ5,11,14, (C18:1Ω7)2/C18:2Ω6 and (C18:1Ω9)2/C18:2Ω6, while simple triacylglycerols without C18:2Ω6)3 were not present. Stereospecific analysis showed that fatty acids with δ5-NMDB system and saturated chains were predominantly located at the site of sn-3 carbon of glycerol backbones. It is evident that there is asymmetry in the distribution of fatty acids in the TG molecules of Ginkgo nut oils.