차량동역학제어시스템은 복잡하고 비선형이므로 잠금방지 제동시스템 및 자동주행시스템 개발에 어려움이 있다. 차량절대속도를 추정하기 위해 퍼지 로직 기법이 최근 적용되어 정상적인 조건에서 만족할 만한 결과를 얻고 있다. 그러나 급격한 제동시 추정오차가 크게 발생되었다. 본 논문에서는 휠 속도 센서를 이용하여 무인 컨테이너 운송차량의 절대속도를 추정하기 위해, 뉴럴 네트워크 모델의 방사대칭 기저함수와 주성분 분석법을 적용하여 10개의 추정 알고리즘중 오차를 4% 이내로 추정할 수 있는 알고리즘을 제시하였다.
Vehicle dynamics control systems are complex and non-linear, so they have difficulties in developing a controller for the anti-lock braking systems and the auto-traction systems. Currently the fuzzy-logic technique to estimate the absolute vehicle speed supplies good results in normal conditions. But the estimation error in severe braking is discontented In this paper, we estimate the absolute vehicle speed of UCT(Unmanned Container Transporter) by using the wheel speed data from standard anti-lock braking system wheel speed sensors. Radial symmetric basis function of the neural network model is proposed to implement and estimate the absolute vehicle speed, and principal component analysis on input data is used 10 algorithms are verified experimentally to estimate the absolute vehicle speed and one of them is perfectly shown to estimate the vehicle speed within 4% error during a braking maneuver.