고도정수처리를 위한 관형 세라믹 정밀여과와 이산화티타늄(TiO2) 광촉매 첨가 PES (polyethersulfone) 구의 혼성공정에서 pH 및 산소 역세척의 영향을 막오염에 의한 저항(Rf) 및 투과선속(J), 총여과부피(VT)의 관점에서 고찰하였다. pH가높아질수록 Rf가 감소하고, J는 증가하는 경향을 보였다. 결과적으로 pH 9에서 최대의 VT를 나타내었다. 탁도의 처리효율은 pH와 무관하게 98.7∼99.0%의 비슷한 처리효율을 보였다. 용존유기물질(DOM)의 처리효율은 pH가 높아질수록 감소하였다.산소와 질소 역세척의 차이를 비교한 결과, Rf,180 값이 산소 역세척 시 질소보다 낮게 나타났고, 초기투과선속(J0)으로 무차원화한 최종투과선속(J180/J0)은 역세척 주기(FT) 10분과 12분을 제외하고 산소 역세척이 질소 보다 높게 유지되었다. 산소 역세척 시 탁도물질의 처리효율은 질소 보다 다소 높게 나타났지만, 그 차이는 미비하다. 질소 역세척 시 DOM의 처리율은 산소보다 높게 나타났다. 또한, 포화산소 조건에서 탁도물질의 처리율은 산소 또는 질소 역세척 경우와 비슷하게 나타났지만, 포화산소가 광촉매와 반응하여 OH 라디칼을 생성하였기 때문에 DOM의 처리효율은 큰 폭으로 증가하였다.
The effects of pH and oxygen back-flushing were investigated in hybrid process of ceramic microfiltration and PES (polyethersulfone) beads loaded with titanium dioxide (TiO2) photocatalyst for advanced drinking water treatment in viewpoints of membrane fouling resistance (Rf), permeate flux (J), and total permeate volume (VT). As increasing pH, Rf de-creased and J increased. Finally the maximum VT could be acquired at pH 9. Treatment efficiencies of turbidity was almost same independent of pH. Treatment efficiency of dissolved organic matters (DOM) decreased as increasing pH. As results of comparing the oxygen and nitrogen back-flushing, Rf,180 at oxygen back-flushing was the lower than that at nitrogen back-flushing, and the dimensionless final permeate flux (J180/J0) by initial permeate flux (J0) at oxygen back-flushing was maintained the higher than that at nitrogen back-flushing except 10 and 12 min of back-flushing period (FT). Treatment effi-ciency of turbidity at oxygen back-flushing was a little higher than that at nitrogen back-flushing. Treatment efficiency of the DOM at nitrogen back-flushing was the higher than that at oxygen back-flushing. Also, treatment efficiency of turbidity at saturated oxygen was similar with those of oxygen and nitrogen back-flushing, but the treatment efficiency of DOM was increased significantly because OH radical could be generated by reaction between saturated oxygen and photocatalyst.