Seismic control performance of MR dampers, which have severe nonlinearity, is different with respect to the dynamic characteristics of earthquake excitations such as magnitude and frequency contents. In this study, effects of excitation characteristics on the equivalent linear system represented by an equivalent damping ratio for single-degree-of-freedom (SDOF) systems with a MR damper are investigated through numerical analysis for various natural frequencies of the structures and design parameters of the MR damper. In addition, to implement the an equivalent linearization procedure considering non-stationarity and frequency contents of the earthquake excitation, seismic response reduction factors for artificial earthquake ground motions are proposed using regression analysis of the linear structural responses. Analysis results show that the relative magnitude of the excitation compared to the friction force of the MR damper and frequency contents of the excitation affect the equivalent damping ratio considerably, and appropriate combination of friction and damping produces additional damping effect