본 연구에서는 유역의 공간상관성을 고려한 다지점 일단위 강수량을 동시에 모의할 수 있는 일강수량 모의기법을 개발하였다. 기존 Hidden Markov Chain Model(HMM)은 단일지점 강수모의에 적용되어 왔으나 관측지점간의 유역상관성을 충분히 고려하지 못하는 문제점을 가지고 있다. 따라서 본 연구에서는 Chow-Liu Tree(CLT) 모형을 적용하여 다변량(multivariate) 형태로써 유역내에 위치한 강우관측소간의 상호종속성을 고려하기 위하여 기존의 동질성 HMM 강우모의기법과 CLT 알고리즘을 결합한 동질성 CLT-HMM 모형을 개발하였다. 본 연구에서 개발된 동질성 CLT-HMM 모형을 사용하여 장기간의 수문자료를 보유하고 있는 기상청 산하의 한강유역 강수네트워크에 대해서 적합성을 검토하였다. 동질성 CLT-HMM 모형을 적용하여 모의 된 결과를 보면 일강수량의 계절적 특성뿐만 아니라 일강수량 모의 시 강수시계열의 통계적인 특성들까지 우수하게 모의하였다. 추가적으로 상관행렬(correlation matrix)을 이용하여 기상관측소간의 공간상관 재현성을 검토한 결과 관측지점들 사이의 공간상관성도 비교적 우수하게 재현하는 것을 확인할 수 있었다.
This study aims to develop a multivariate daily rainfall simulation model considering spatial coherence across watershed. The existing Hidden Markov Model(HMM) has been mainly applied to single site case so that the spatial coherences are not properly addressed. In this regard, HMM coupled with Chow-Liu Tree(CLT) that is designed to consider inter-dependences across rainfall networks was proposed. The proposed approach is applied to Han-River watershed where long-term and reliable hydrologic data is available, and a rigorous validation is finally conducted to verify the model’s capability. It was found that the proposed model showed better performance in terms of reproducing daily rainfall statistics as well as seasonal rainfall statistics. Also, correlation matrix across stations for observation and simulation was compared and examined. It was confirmed that the spatial coherence was well reproduced via CLT-HMM model.