Creation of Fractal Images with Rotational Symmetry Based on Julia Set
이미지 디자인 등에 사용하기에 용이한 정다각형의 회전대칭성을 갖는 프랙탈 생성에 대해 연구하였다. Loocke의 논문[13]에서 사용한 방법과 같이 회전, 축소 아핀함수를 기반으로 하되 제곱근(square root)함수 대신 줄리아 셋(Julia set)을 생성하는 함수들로 확장하여 IFS(iterated function systems)를 구성하였다. 그 결과 줄리아 셋의 모양에 바탕을 둔 회전 대칭적 프랙탈을 생성할 수 있었으며, 줄리아 셋의 모양이 잘 나타나지 않는 경우에는 IFS 생성 알고리즘의 확률적 함수선택 부분을 변경하여 줄리아 셋의 모양이 뚜렸해지도록 할 수 있음을 보였다. 또한 줄리아 셋의 모양을 지수의 변화를 통해 변형하는 방법을 제안하였다.
We studied the creation of fractal images with polygonal rotation symmetry. As in Loocke's method[13] we start with IFS of affine functions that create polygonal fractals and extends the IFS by adding functions that create Julia sets instead of adding square root functions. The resulting images are rotationally symmetric and Julia set shaped. Also we can improve fractal images by modifying probabilistic IFS algorithm, and we suggest a method of deforming Julia set by changing exponent value.