논문 상세보기

Cloning and Characterization of a Novel β-1,4-Xylanase from an Earthworm-symbiotic Bacterium, Cellulosimicrobium sp. Strain HY-13

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/289915
모든 회원에게 무료로 제공됩니다.
한국응용곤충학회 (Korean Society Of Applied Entomology)
초록

The gene (2,304-bp) encoding a novel xylanolytic enzyme (XylD) with a catalytic domain, which is 70% identical to that of Cellulomonas flavigena DSM 20109 GH6 β-1,4-cellobiohydrolase, was identified from an earthworm (Eisenia fetida)-symbiotic bacterium, Cellulosimicrobium sp. strain HY-13. The enzyme consisted of an N-terminal catalytic GH6-like domain, a fibronectin type 3 (Fn3) domain, and a C-terminal carbohydrate-binding module 2 (CBM 2). XylDΔFn3-CBM 2 displayed high transferase activity (788.3 IU mg-1) toward p-nitrophenyl (PNP) cellobioside, but did not degrade xylobiose, glucose-based materials, or other PNP-sugar derivatives. Birchwood xylan was degraded by XylDΔFn3-CBM 2 to xylobiose (59.2%) and xylotriose (40.8%). The transglycosylation activity of the enzyme, which enabled the formation of xylobiose (33.6%) and xylotriose (66.4%) from the hydrolysis of xylotriose, indicates that it is not an inverting enzyme but a retaining enzyme. The endo-β-1,4-xylanase activity of XylDΔFn3-CBM 2 increased significantly by approximately 2.0-fold in the presence of 50 mM xylobiose.

저자
  • Do Young Kim(Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Hyo Jeong Kim(Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Han-Young Cho(Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Dong-Ha Shin(Insect Biotech Co. Ltd.)
  • Kwang-Hee Son(Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Ho-Yong Park(Industrial Bio-materials Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))