Mamestra brassicae (cabbage moth) is a common European moth of the order Lepidoptera and the family Noctuidae. The larval stage is highly polyphagous and is known to feed on more than 70 species of host plants from 22 families, including Brassica species, lettuce, onion, potato, pea, tomato and apple. M. brassicae has become a significant pest also in Asia due to the damage caused to agriculturally and economically important Brassica crops. It is difficult to control M. brassicae using chemical insecticide because of its rapid development of resistance. The objective of our study, therefore, was the mass production and formulation of a local strain of M. brassicae nucleopolyhedrovirus-K1 (MabrNPV-K1) for the development of viral insecticide to control it. In production efficiency of MabrNPV-K1 using M. brassicae larvae, the mortality of the 3rd instar larvae was 100% when inoculated with 1.0 × 105 PIBs/larva and the yield of MabrNPV-K1 was maximal. Regarding the mortality, yield of polyhedra, inoculation doses and required time, the 1.0 × 104 PIBs/larva at 30°C was determined as optimal conditions producing polyhedra efficiently. To formulate MabrNPV-K1, feeding toxicities of various supplements including spreader and ultraviolet (UV) -protectant were determined. Tinopal UNPA-GX which is UV-protectants was effective for protection of polyhedra from UV and showed the increased mortality when added with 1% concentration. Other supplements did not influence significantly the mortality of MabrNPV-K1. Formulated MabrNPV-K1 with several supplements showed higher pathogencity than un-formulated MabrNPV-K1.