A numerical analysis was performed to study PEMFC performance characteristics depending on the flow direction of cathode reactant gas, cathode relative humidity, and porosity of gas diffusion layer. As cathode relative humidity decreases and porosity increases, current density increases due to better diffusion of reactant gas to cathode surface. As current density increases, power density increases initially and then decreases with its maximum located around current density value of 2.2 Amperes per square centimeter. From the analysis of current density distribution inside membrane, the counter-flow cases show more uniform profile across the membrane than the co-flow cases due to more uniform reactant gas supply.