Development of Longitudinal Dispersion Coefficient Based on Theoretical Equation for Transverse Distribution of Stream-Wise Velocity in Open Channel : Part II. Longitudinal Dispersion Coefficient
본 연구의 목적은 하천에서 흐름방향 유속의 횡분포식에 기반하여 1차원 종분산계수를 이론적으로 유도하고 이들의 타당성을 검증하는 것이다. 이를 위해 본 논문의 전편 “I. 흐름방향 유속의 횡포식”에서는 SKM을 도입하여 삼각형 단면수로에서 횡분포식을 해석적으로 유도하였다. 본 논문의 후편 “II. 종분산계수”에서는 전편에서 유도된 유속의 횡분포식을 기반으로 1차원 종분산계수 이론식을 새롭게 개발하였다. 개발된 종분산계수 이론식을 검증하기 위해 전편과 동일한 하천에서 수행된 추적자 농도 실험 결과를 이용한 관측 종분산계수와 비교 분석하였다. 또한 개발된 종분산 계수식을 기존의 식들과 비교하여 본 연구에서 개발된 식의 차별점 및 우수성을 검토하였다. 결과적으로 무차원 종분산계수는 무차원 횡확산계수에 반비례하고, 하폭 대 수심비의 제곱에 비례하였다. 그리고 Manning의 조도계수의 제곱에 반비례함을 확인할 수 있었다.
The aim of this study is that a theoretical formula for estimating the one-dimensional longitudinal dispersion coefficient is derived based on a transverse distribution equation for the depth averaged stream-wise velocity in open channel. In “Part I. Theoretical equation for stream-wise velocity” which is the former volume of this article, the velocity distribution equation is derived analytically based on the Shiono-Knight Method (SKM). And then incorporating the velocity distribution equation into a triple integral formula which was proposed by Fischer (1968), the one-dimensional longitudinal dispersion coefficient can be derived theoretically in “Part II. Longitudinal dispersion coefficient” which is the latter volume of this article. The proposed equations for the velocity distribution and the longitudinal dispersion coefficient are verified by using observed data set. As a result, the non-dimensional longitudinal dispersion coefficient is inversely proportional to square of the Manning's roughness coefficient and the non-dimensional transverse dispersion coefficient, and is directly proportional to square of the aspect ratio (channel width to depth).