본 연구에서는 Wavelet Transform과 Support Vector Machine (SVM)을 결합한 Hybrid 상수도 수요량 예측 모형을 개발하였다. Wavelet Transform 방법을 활용하여 다양한 스케일이 존재하는 상수도 수요량 시계열을 분해하여 단순한 형태의 시계열로 변환하는데 이용하였으며, 비선형 예측모형인 SVM은 이들 단순화된 시계열을 예측하는데 활용하여 예측성능을 극대화시키는 방안을 수립하였다. 본 연구에서는 상수도 수요량 자료에서 내재되어 있는 주기의 특성과 비선형 예측모형의 장점을 서로 연계한 해석이 가능하였으며 시각적인 검토 및 모든 통계지표에서 개선된 예측결과를 확인할 수 있었다. 특히, 기존 ARIMA 모형 계열에서 나타나는 자기예측문제를 상당부분 개선한 결과를 보여줌으로서 실질적인 수요량 예측모형으로서 활용이 가능할 것으로 판단된다.
A hybrid forecasting scheme based on wavelet decomposition coupled to a support vector machine model is presented for water demand series that exhibit nonlinear behavior. The use of wavelet transform followed by the SVM model of each leading component is explored as a model for water demand data. The proposed forecasting model yields better results than a traditional ARIMA time series forecasting model in terms of self-prediction problem as well as reproducing the properties of the observed water demand data by making use of the advantages of wavelet transform and SVM model. The proposed model can be used to substantially and significantly improve the water demand forecasting and utilized in a real operation.