논문 상세보기

팬텀 내 조영제 농도에 따른 뇌 대사물질 Spectrum의 정량분석 KCI 등재

Quantitative Analysis of Brain Metabolite Spectrum Depending on the Concentration of the Contrast Media in Phantom

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/293893
서비스가 종료되어 열람이 제한될 수 있습니다.
Journal of the Korean Society of Radiology (한국방사선학회논문지)
한국방사선학회 (The Korea Society of Radiology)
초록

Quantitative analysis of MR spectrum depending on mole concentration of the contrast media in cereberal metabolite phantom was performed. PRESS pulse sequence was used to obtain MR spectrum at 3.0T MRI system (Archieva, Philips Healthcare, Best, Netherland), and the phantom contains brain metabolites such as N-Acetyl Asparatate (NAA), Choline (Cho), Creatine (Cr) and Lactate (Lac). In this study, optimization of MRS PRESS pulse sequency depending on the concentration of contrast media (0, 0.1 and 0.3 mmol/ℓ) was evaluated for various repetition time (TR; 1500, 1700 and 2000 ms).
In control (cotrast-media-free) group, NAA and Cho signals were the highest at TR 2000 ms than at 1700 and 1500 ms. Cr had the highest peak signal at TR 1500 ms. When concentration of contrast media was 0.1 mmol/ℓ, the metabolites were increased NAA 73%, Cho 249%, Cr 37% at TR 1700 ms compared with other TR, and also signal increased at 0.3 mmol/ℓ, In 0.5 mmol/ℓ of contrast agent, cerebral metabolite peaks reduced, especially when TR 1500 ms and 2000 ms they decreased below those of control group. The ratio of metabolite peaks such as NAA/Cr and Cho/Cr decreased as the concentration of the contrast agent increased from 0.1 to 0.5 mmol/ℓ. Authors found that the optimization of PRESS sequence for 0.3T MRS was as follows: low density of contrast agent (0.1 mmol/ℓ and 0.3 mmol/ℓ) made the highest signal intensity, while high density of contrast agent reveals the least reduction of signal intensity at 1700 ms. In conclusion, authors believe that it is helpful to reduce TR for acquiring maximum signal intensity.

저자
  • 신운재(동의과학대학교 방사선과) | WoonJae Shin Corresponding Author
  • 강은보(동의과학대학교 방사선과) | EunBo Gang
  • 천송이(인제대학교 의용공학과) | SongI Chun