Ceramics biomaterials are useful as implant materials in orthopedic surgery. In this study, porous
HA(hydroxyapatite)/β-TCP(tricalcium phosphate) composite biomaterials were successfully fabricated using HA/β-TCP powders with 10-30 wt% NH4HCO3 as a space holder(SH) and TiH2 as a foaming agent, and MgO powder as a binder. The HA/β-TCP powders were consolidated by spark plasma sintering(SPS) process at 1000 oC under 20 MPa conditions. The effect of SH content on the pore size and distribution of the HA/β-TCP composite was observed by scanning electron microscopy(SEM) and a microfocus X-ray computer tomography system(SMX-225CT). These microstructure observations revealed that the volume fraction of the pores increased with increasing SH content. The pore size of the HA/β-TCP composites is about 400-500 μm. The relative density of the porous HA/β-TCP composite increased with decreasing SH content. The porous HA/β-TCP composite fabricated with 30%SH exhibited an elastic modulus similar to that of cortical bone; however, the compression strength of this composite is higher than that of cortical bone.