In order to better understand the biological systems that are affected in response to cosmic ray, we conducted the weighted gene co-expression network analysis with module detection method. By using the Pearson’s correlation coefficient value, we were evaluated the complex gene-gene functional interactions between 680 CR-response probes from integrated microarray datasets, which included large-scale transcriptional profiling of 918 microarray samples. These probes were divided into 6 distinct modules that contained 20 enriched function such as oxidoreductase activity, response to stimulus and stress, and hydrolase activity. Especially, module 1 and 2 commonly showed the enriched annotation categories such as oxidoreductase activity, including the enriched cis-regulatory elements known as ROS specific regulator. These results suggest in module1 and 2 that ROS-mediated irradiation response pathway are affected by CR. We found the 243 irradiation-dependent probes, which were exhibited the similarities of differentially expressed patterns in various irradiation microarray datasets, and RT-PCR for confirmations of several irradiation-dependent genes were exhibited the similar expressed patterns in rice by CR, gamma ray and Ion beam treatments. Interestingly, these genes were differentially expressed by non-gravity. Moreover, we were identified the co-regulations between several irradiation-dependent genes and functional interacted genes in the CR-responsive network by various GA treatments such as different conditions of dose and treatment time. These results of network-based analysis might provide a clue to understanding the complex biological system of CR.