Rice is one of the most important food crops in the world, and has been used as model monocots for genetic studies, because of its relatively small genome size. We have previously reported the different functions of several RING (Really Interesting New Gene) proteins to respond the various abiotic stresses. In order to study a regulation of RING proteins in rice under ionizing irradiation such as gamma ray (GA), we have identified the expression patterns of these genes by RT-PCR. We found Gamma-ray induced RING finger protein (OsGRP) gene, which were associated with cytosol by subcellular localization analysis. in vitro ubiquitination assay revealed that OsGRP possess E3 ligase activity. Also, we demonstrate that C196A point mutation in the RING finger domain of OsGRP can have a critical effect to the breakdown of structural integrity in RING constructs. To identify the interaction partners for OsGRP in protein-protein interactions, we found the seven genes interacted with OsGRP by Yeast Two Hybrid method. To examine the GA-influence of interaction partners by RT-PCR, two genes were specifically down-regulated in rice during GA treatment. These interaction partners were identified the reliable interactions and subcellular localizations via BiFC method. Interestingly, five genes associated with plastid, while two down-regulated genes associated with cytosol and plastid. These results of OsGRP based on genetic approach might provide a clue to understanding the GA responsive mechanism in rice.