논문 상세보기

TPBI 전자 수송층을 이용한 청색 고분자 유기발광다이오드의 전기·광학적 특성 향상 KCI 등재 SCOPUS

Improving the Electrical and Optical Properties of Blue Polymer Light Emitting Diodes by Introducing TPBI Electron Transport Layer

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/297093
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국재료학회지 (Korean Journal of Materials Research)
한국재료학회 (Materials Research Society Of Korea)
초록

In this study, we fabricated a polymer light emitting diode (PLED) and investigated its electrical and optical characteristics in order to examine the effects of the PFO [poly(9,9-dioctylfluorene-2-7-diyl) end capped with N,N-bis(4-methylphenyl)-4-aniline] concentrations in the emission layer (EML). The PFO polymer was dissolved in toluene ranging from 0.2 to 1.2 wt%, and then spin-coated. To verify the influence of the TPBI [2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)]electron transport layer, TPBI small molecules were deposited by thermal evaporation. The current density, luminance, wavelength and current efficiency characteristics of the prepared PLED devices with and without TPBI layer at various PFO concentrations were measured and compared. The luminance and current efficiency of the PLED devices without TPBI layer were increased, from 117 to 553 cd/m2 and from 0.015 to 0.110 cd/A, as the PFO concentration increased from 0.2 to 1.0 wt%. For the PLED devices with TPBI layer, the luminance and current efficiency were 1724 cd/m2 and 0.501 cd/A at 1.0 wt% PFO concentration. The CIE color coordinators of the PLED device with TPBI layer at 1.0 wt% PFO concentration showed a more pure blue color compared with the one without TPBI, and the CIE values varied from (x, y) = (0.21, 0.23) to (x, y) = (0.16, 0.11).

저자
  • 공수철 | Gong, Su-Cheol
  • 전창덕 | 전창덕
  • 유재혁 | 유재혁
  • 장호정 | 장호정