논문 상세보기

초전도 결정의 저온 비열 점프의 자기장 의존성 KCI 등재 SCOPUS

Magnetic Field Dependence of Low Temperature Specific Heat Jump in Superconducting Crystal

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/297171
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국재료학회지 (Korean Journal of Materials Research)
한국재료학회 (Materials Research Society Of Korea)
초록

Specific heat of a crystal is the sum of electronic specific heat, which is the specific heat of conduction electrons, and lattice specific heat, which is the specific heat of the lattice. Since properties such as crystal structure and Debye temperature do not change even in the superconducting state, the lattice specific heat may remain unchanged between the normal and the superconducting state. The difference of specific heat between the normal and superconducting state may be caused only by the electronic specific heat difference between the normal and superconducting states. Critical temperature, at which transition occurs, becomes lower than Tc0 under the influence of a magnetic field. It is well known that specific heat also changes abruptly at this critical temperature, but magnetic field dependence of jump of specific heat has not yet been developed theoretically. In this paper, specific heat jump of superconducting crystals at low temperature is derived as an explicit function of applied magnetic field H by using the thermodynamic relations of A. C. Rose-Innes and E. H. Rhoderick. The derived specific heat jump is compared with experimental data for superconducting crystals of MgCNi3, LiTi2O4 and Nd0.5Ca0.5MnO3. Our specific heat jump function well explains the jump up or down phenomena of superconducting crystals.

저자
  • 김철호 | Kim, Cheol-Ho