논문 상세보기

Characterization of Cu2ZnSnSe4 Thin Films Selenized with Cu2-xSe/SnSe2/ZnSe and Cu/SnSe2/ZnSe Stacks KCI 등재 SCOPUS

  • 언어ENG
  • URLhttps://db.koreascholar.com/Article/Detail/297430
구독 기관 인증 시 무료 이용이 가능합니다. 4,000원
한국재료학회지 (Korean Journal of Materials Research)
한국재료학회 (Materials Research Society Of Korea)
초록

Cu2ZnSn(S,Se)4 material is receiving an increased amount of attention for solar cell applications as an absorber layer because it consists of inexpensive and abundant materials (Zn and Sn) instead of the expensive and rare materials (In and Ga) in Cu(In,Ga)Se2 solar cells. We were able to achieve a cell conversion efficiency to 4.7% by the selenization of a stacked metal precursor with the Cu/(Zn + Sn)/Mo/glass structure. However, the selenization of the metal precursor results in large voids at the absorber/Mo interface because metals diffuse out through the top CZTSe layer. To avoid the voids at the absorber/Mo interface, binary selenide compounds of ZnSe and SnSe2 were employed as a precursor instead of Zn and Sn metals. It was found that the precursor with Cu/SnSe2/ZnSe stack provided a uniform film with larger grains compared to that with Cu2Se/SnSe2/ZnSe stack. Also, voids were not observed at the Cu2ZnSnSe4/Mo interface. A severe loss of Sn was observed after a high-temperature annealing process, suggesting that selenization in this case should be performed in a closed system with a uniform temperature in a SnSe2 environment. However, in the experiments, Cu top-layer stack had more of an effect on reducing Sn loss compared to Cu2Se top-layer stack.

저자
  • Munir, Rahim
  • Jung, Gwang Sun | Jung, Gwang Sun
  • Ko, Young Min | Ko, Young Min
  • Ahn, Byung Tae | Ahn, Byung Tae