The electrical and optical properties of fluorine-doped tin oxide films grown on polyethylene terephthalate film witha hardness of 3 using electron cyclotron resonance plasma with linear microwave of 2.45GHz of high ionization energy wereinvestigated. Fluorine-doped tin oxide films with a magnetic field of 875 Gauss and the highest resistance uniformity wereobtained. In particular, the magnetic field could be controlled by varying the distribution in electron cyclotron depositionpositions. The films were deposited at various gas flow rates of hydrogen and carrier gas of an organometallic source. Thesurface morphology, electrical resistivity, transmittance, and color in the visible range of the deposited film were examined usingSEM, a four-point probe instrument, and a spectrophotometer. The electromagnetic field for electron cyclotron resonancecondition was uniformly formed in at a position 16cm from the center along the Z-axis. The plasma spatial distribution ofmagnetic current on the roll substrate surface in the film was considerably affected by the electron cyclotron systems. Therelative resistance uniformity of electrical properties was obtained in film prepared with a magnetic field in the current rangeof 180~200A. SEM images showing the surface morphologies of a film deposited on PET with a width of 50cm revealedthat the grains were uniformly distributed with sizes in the range of 2~7nm. In our experimental range, the electrical resistivityof film was able to observe from 1.0×10−2 to 1.0×10−1Ωcm where optical transmittance at 550nm was 87~89%. Theseproperties were depended on the flow rate of the gas, hydrogen and carrier gas of the organometallic source, respectively.