The crystallization effects of boron (B) powder on the phase, full width at half maximum (FWHM) values, and critical properties were investigated for in-situ reacted MgB2 bulk superconductors. The semi-crystalline B powder was heat-treated at different temperatures of 1000, 1300 and 1500˚C for 5 hours in an Ar atmosphere. Then, using as-received and heat-treated B powders, the MgB2 samples were prepared at 600˚C for 40 hours in an Ar atmosphere. As the heat-treatment temperature of the B powder increased, both the particle size of the B powder and crystalline phase increased. In the case of MgB2 samples using B powders heat-treated at above 1300˚C, unreacted magnesium (Mg) and B remained due to the improved crystallinity of the B powder. As the heat-treatment temperature of B powder increased, the critical current density of MgB2 decreased continuously due to the reduction of grain boundary density and superconducting volume caused by unreacted Mg and B.