Tall fescue (Festuca arundinacea Schreb.) is an important cool season forage plant that is not well suited to extreme heat, salts, or heavy metals. To develop transgenic tall fescue plants with enhanced tolerance to abiotic stress, we introduced a MsHsp23 gene expression vector construct through Agrobacterium-mediated transformation. Integration and expression of the transgene were confirmed by PCR, northern blot, and western blot analyses. Under normal growth conditions, there was no significant difference in the growth of the transgenic plants and the non-transgenic controls. However, when exposed to various stresses such as salt or arsenic, transgenic plants showed a significantly lower accumulation of hydrogen peroxide and thiobarbituric acid reactive substances than control plants. We speculate that the high levels of MsHsp23 proteins in the transgenic plants protect leaves from oxidative damage through chaperon and antioxidant activities. These results suggest that MsHsp23 confers abiotic stress tolerance in transgenic tall fescue and may be useful in developing stress tolerance in other crops. Compared with traditional plant breeding, genetic engineering provides a relatively fast and precise means of achieving improved stress tolerance of forage crops. Development of forage crops that are more tolerant to various abiotic stresses could lead to the use of more new lands for cultivation.