논문 상세보기

간 초음파영상에서 컴퓨터보조진단을 이용한 미만성 간질환의 영상분석 KCI 등재

Image Analysis of Diffuse Liver Disease using Computer-Adided Diagnosis in the Liver US Image

  • 언어KOR
  • URLhttps://db.koreascholar.com/Article/Detail/302105
서비스가 종료되어 열람이 제한될 수 있습니다.
Journal of the Korean Society of Radiology (한국방사선학회논문지)
한국방사선학회 (The Korea Society of Radiology)
초록

본 연구는 간 초음파영상에서 통계적 속성 기반의 밝기 히스토그램에 기초한 픽셀 질감분석 파라미터(평균밝기, 왜곡도, 균일도, 엔트로피)와 간과 콩팥실질의 밝기 차를 이용한 영상분석을 통해 미만성 간질환의 컴퓨터보조진단 적용 가능성을 알아보고자 하였다. 실험은 간 초음파영상(정상, 지방간, 간경화)에서 관심영역(50×50픽셀)을 설정하고 4가지의 픽셀 질감분석 파라미터와 간과 콩팥의 실질 밝기의 차를 이용하여 질환인식률을 평가하였다. 그 결과 평균밝기, 균일도, 엔트로피의 질환인식률은 100%, 왜곡도 96%로 높게 나타났으며, 간과 콩팥의 실질 밝기 차는 정상 -1.129±12.410, 지방간 33.182±11.826으로 뚜렷한 차이를 나타내었으나, 간경화의 경우 -1.668±10.081로 정상과는 다소 작은 차이를 나타내었다. 이러한 결과를 바탕으로 높은 질환인식률을 보인 픽셀 질감분석 파라미터와 실질 밝기 차를 이용한 컴퓨터보조진단은 미만성 간질환의 감별에 유용한 도구로써 임상적인 활용 가능성이 있으며, 판독 오류를 최소화하고 정확한 진단과 치료방향 제시에 도움이 될 것으로 기대된다.

In this paper, we studied possibility about application for CAD on diffuse liver disease through pixel texture analysis parameters(average gray level, skewness, entropy) which based statistical property brightness histogram and image analysis using brightness difference liver and kidney parenchyma. The experiment was set by ROI (50x50 pixels) on liver ultrasound images.(non specific, fatty liver, liver cirrhosis) then, evaluated disease recognition rates using 4 types pixel texture analysis parameters and brightness gap liver and kidney parenchyma. As a results, disease recognition rates which contained average brightness, skewness, uniformity, entropy was scored 100%∼96%, they were high. In brightness gap between liver and kidney parenchyma, non specific was -1.129±12.410 fatty liver was 33.182±11.826, these were shown significantly difference, but liver cirrhosis was -1.668±10.081, that was somewhat small difference with non specific case. Consequently, pixel texture analysis parameter which scored high disease recognition rates and CAD which used brightness difference of parenchyma are very useful for detecting diffuse liver disease as well as these are possible to use clinical technique and minimize reading miss. Also, it helps to suggest correct diagnose and treatment.

저자
  • 이진수(인제대학교 해운대백병원 영상의학과) | Jinsoo Lee
  • 김창수(부산가톨릭대학교 보건과학대학 방사선학과) | Changsoo Kim Corresponding Author